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several effects in our calculation: next-to-leading order initial conditions, evolution and

coefficient functions. Soft-gluon effects are resummed at next-to-leading-log accuracy. A

matching condition for the crossing of the bottom threshold in evolution is also implemented

at next-to-leading order accuracy. Important initial-state electromagnetic radiation effects

in the CLEO and BELLE data are accounted for. We find that, with reasonably simple

choices of a non-perturbative correction to the fixed-order initial condition for the evo-

lution, the data from CLEO and BELLE can be fitted with remarkable accuracy. The

fitted fragmentation function, when evolved to LEP energies, does not however represent

fairly the D∗ fragmentation spectrum measured by ALEPH. Large non-perturbative cor-

rections to the coefficient functions of the meson spectrum are needed in order to reconcile

CLEO/BELLE and ALEPH results.

Non-perturbative parameters extracted from the fits to e+e− fragmentation data for D/D∗

and B mesons are tabulated. They can be employed in the theoretical predictions for

the production of charmed and bottomed mesons in hadron-hadron, photon-hadron and

photon-photon collisions.
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1. Introduction

The study of the fragmentation functions of heavy flavoured hadrons is of considerable in-

terest in several aspects of QCD and collider physics. On one hand, at transverse momenta

much larger than the mass of the heavy flavour, the heavy-flavour fragmentation functions

behave similarly to the light-hadron ones, and obey an Altarelli-Parisi evolution equation.

Unlike the case of light hadrons, however, heavy-flavour fragmentation is very hard, and

thus probes a region of the evolution equation in the large x regime. Furthermore, it is

dominated by the non-singlet component, at least at moderate energies, so that its study

is much simpler.
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Due to the large value of the heavy-quark mass m, the heavy-quark fragmentation

function has a well defined perturbative expansion in QCD. In typical production phenom-

ena, like for example heavy-flavour production in e+e− annihilation, the coefficients of the

perturbative result contain large logarithms of the ratio Q/m, where Q is the annihilation

energy. These logarithms can be organized using the standard Altarelli-Parisi evolution

formalism, so that the perturbative result is expressed as a perturbative initial condition for

the fragmentation function [1], written as expansion in powers of αS(m), evolved at the high

scale Q, using standard evolution. Sudakov logarithms that affect the x → 1 region can

be resummed to all orders too [2]. In this framework, the description of non-perturbative

effects that affect the initial condition of the fragmentation function are parametrized by

simple phenomenological forms. These parameterizations can then be employed to provide

theoretical predictions for charmed and bottomed hadron production in hadron-hadron,

photon-hadron and photon-photon collisions.

Recently, new, high quality data on charmed meson production have come from CLEO

[3] and BELLE [4]. One thus has the opportunity to perform a more accurate fit to the

non-perturbative initial conditions, and furthermore one can test the evolution of the frag-

mentation function from centre-of-mass energies of 10.6 to 91.2 GeV, using charm data

from LEP experiments. In the present work we will carry out this program. We develop

a procedure that overcomes various difficulties in the large-x region of the fragmentation

function. We are thus able to fit the measured fragmentation functions using next-to-

leading logarithmic (NLL) evolution, next-to-leading order (NLO) initial conditions, NLO

coefficient functions, NLL Sudakov resummation (both for the initial conditions and for

the coefficient functions) and a phenomenological non-perturbative component. With a

suitable choice of this non-perturbative component we can obtain very good fits to CLEO

and BELLE data for D∗ and D fragmentation, over the whole x range. All the moments

of the fragmentation functions are therefore well reproduced. This represents an improve-

ment over previous investigations where, while obtaining good fits to some low moments

(a necessary and sufficient condition for predicting heavy-meson production in hadronic

collisions) the fit in x-space was not completely satisfactory. The same procedure is also

applied to B meson spectra measured in Z0 decays. The relevant data from the ALEPH [5]

OPAL [6], SLD [7] and DELPHI [8, 9] collaborations are equally well described.

We evolve the D∗ fragmentation function fitted to CLEO and BELLE data up to LEP

energies, taking into account the opening of the bottom threshold [10]. We find a discrep-

ancy between the QCD prediction and the ALEPH data [11], that can be parametrized as

a power correction of the form C(N − 1)/E, with C of the order of few hundreds MeV,

or of the form C(N − 1)/E2, with C ≈ 5 GeV2, where E =
√

q2 is the total centre-of-

mass energy and N is the moment in Mellin space. Unfortunately, there is no way, at the

moment, to discriminate between the two possibilities. Theoretical arguments based upon

renormalons disfavour the presence of 1/E corrections in the evolution of fragmentation

functions. On the other hand, these arguments require validation.

In section 2 we describe the theoretical ingredients that enter our calculation, collect-

ing and summarizing previously available results: the perturbative initial condition, the

evolution, the Sudakov effects and the bottom threshold. The novel treatment of the large-
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N/large-x region is also detailed here. In section 3 we describe our treatment of electro-

magnetic initial-state radiation. The implementation of the non-perturbative component

of the fragmentation function is discussed in section 4. In section 5 we perform fits to the

CLEO and BELLE data. In Section 6 we compare the evolved CLEO/BELLE D∗ fit to

the ALEPH data, and discuss in detail the related problems. Fits for B meson production

are presented in section 7. In section 8, we perform fits to data under a different perspec-

tive, using Mellin moments rather than the x-space distributions, and employing a simpler,

one-parameter non-perturbative function, that can be related to Λ/m power corrections.

The implications of the new BELLE and CLEO data for heavy-flavour hadroproduction

are also discussed in this section. Finally, in section 9, we give our conclusions.

2. Theoretical framework

We consider the inclusive production of a heavy quark Q of mass m

e+e− → Z/γ (q) → Q (p) + X , (2.1)

where q and p are the four-momenta of the intermediate boson and of the final quark. We

define x as the scaled energy of the final heavy quark,

x ≡ 2 p · q
q2

. (2.2)

In our framework, we neglect corrections suppressed by powers of the heavy-quark (meson)

mass, and so the above definition may be replaced with the usual experimental definition

of scaled momentum (i.e. the heavy flavoured meson momentum over its maximum value).

The inclusive cross section for the production of the heavy quark Q can be written as a

perturbative expansion in αS

dσQ

dx
(x, q2,m2) =

∞
∑

n=0

ᾱn
s (µ2)σ

(n)
Q (x, q2,m2, µ2) , (2.3)

where E =
√

q2 is the total centre-of-mass energy, µ is the renormalization scale, and

ᾱs(µ
2) ≡ αS(µ

2)

2π
. (2.4)

The cross section (2.3), normalized to the total cross section, is sometimes referred to as

the heavy-quark fragmentation function in e+e− annihilation.

In order not to spoil the convergence of eq. (2.3), the coefficients σ
(n)
Q should be small

enough to justify a perturbative expansion in terms of αS. There are, however, at least two

interesting regions of the parameter phase space where such convergence is undermined:

1. If q2 À m2, large logarithms of the form log(q2/m2) appear in the differential cross

section (2.3) to all orders in the perturbative expansion. These logarithms have

collinear origin, and the mass m acts as a regulator.
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2. In the region of the phase space of multiple soft-gluon emission, i.e. x → 1, the

differential cross section contains enhanced terms proportional to logn(1−x)/(1−x).

In the following two sections, we collect the relevant formulae for the resummation of

these large contributions at the next-to-leading log level.

2.1 Collinear logarithms

In the limit where power terms of the ratio m2/q2 can be neglected, the differential cross

section satisfies the factorization theorem

dσP,Q

dx
(x, q2,m2) =

∑

i

∫ 1

x

dz

z
CP ,i

(

z, q2, µ2
)

Di

(x

z
, µ2,m2

)

, (2.5)

where the subscript P stands for either T for transverse, L for longitudinal, A for asym-

metric or nothing for the total (i.e. L+T) cross section.1 In the following, we shall always

drop the polarization subscript, since we shall always refer to total cross sections.

The Ci coefficients are the MS-subtracted partonic cross sections for producing the

massless parton i, and Di are the MS fragmentation functions for parton i to evolve into

the heavy quark Q. The factorization scale µ2 must be taken of order q2 in order to avoid

the appearance of large logarithms of q2/µ2 in the partonic cross section. The explicit

expressions for the partonic cross sections and for the fragmentation functions at NLO can

be found in refs. [1, 12].

The MS fragmentation functions Di obey the Altarelli-Parisi evolution equations2

dDi

d log µ2
(x, µ2,m2) =

∑

j

∫ 1

x

dz

z
Pji

(x

z
, ᾱs(µ

2)
)

Dj(z, µ2,m2) . (2.6)

The Altarelli-Parisi splitting functions Pji have the perturbative expansion

Pji

(

x, ᾱs(µ
2)

)

= ᾱs(µ
2)P

(0)
ji (x) + ᾱ2

s(µ
2)P

(1)
ji (x) + O(ᾱ3

s) , (2.7)

where the P
(0)
ji are3 [13]

P (0)
qq (z) = CF

[

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

,

P (0)
gg (z) = 2CA

[

z

(1 − z)+
+

1 − z

z
+ z(1 − z) +

(

11

12
− nfTF

3CA

)

δ(1 − z)

]

,

P (0)
gq (z) = CF

1 + (1 − z)2

z
,

P (0)
qg (z) = TF

[

z2 + (1 − z)2
]

, (2.8)

1We follow closely the notation of ref. [12].
2Notice that the splitting functions are transposed with respect to the structure function evolution

equations.
3The + distribution is defined as

Z 1

0

dz h(z) [ g(z) ]+ ≡
Z 1

0

dz [h(z) − h(1)] g(z) .
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nf is the number of active flavours and

CA = 3, CF =
4

3
, TF =

1

2
. (2.9)

The NLO splitting functions P
(1)
ji (needed to achieve NLL accuracy) have been computed

in refs. [14 – 18]. They are too lengthy to be replicated here.

The initial conditions for the MS fragmentation functions were first obtained at the

NLO level in ref. [1]. They are given by

DQ(x, µ2
0,m

2) = δ(1 − x) + ᾱs(µ
2
0) d

(1)
Q (x, µ2

0,m
2) + O(ᾱ2

s) , (2.10)

Dg(x, µ2
0,m

2) = ᾱs(µ
2
0) d(1)

g (x, µ2
0,m

2) + O(ᾱ2
s) , (2.11)

(all the other components, of order ᾱ2
s, are beyond the accuracy of the present calculation

and have been computed in refs. [19, 20]), where

d
(1)
Q (x, µ2

0,m
2) = CF

[

1 + x2

1 − x

(

log
µ2

0

m2
− 2 log(1 − x) − 1

)]

+

, (2.12)

d(1)
g (x, µ2

0,m
2) = TF

[

x2 + (1 − x)2
]

log
µ2

0

m2
. (2.13)

In order to compute the NLL resummed fragmentation function, one takes the initial

conditions at a scale µ0 ' m, evolves them up to µ ' E (these choices for µ0 and µ prevent

the appearance of large logarithms that would spoil the NLL accuracy), and then applies

eq. (2.5), using the NLO expression for the partonic cross sections Ci given in eqs. (2.15)

of ref. [12]4

Cq(z, q2, µ2) =

[

δ(1 − z) + ᾱsa
(1)
q

(

z,
µ2

q2

)]

σ0,q(q
2) , (2.14)

Cg(z, q2, µ2) = ᾱsa
(1)
g

(

z,
µ2

q2

)

σ0,g (q2) , (2.15)

where, to make contact with the notations of refs. [1, 12], we have defined

a
(1)
q/g

(

z,
µ2

q2

)

≡ CFcq/g

(

z,
µ2

q2

)

. (2.16)

The procedure outlined above guarantees that all leading and next-to-leading logarithmic

terms of quasi-collinear origin (terms of the form (ᾱs log(q2/m2))n and ᾱs(ᾱs log(q2/m2))n

respectively) are correctly resummed in the final cross section.

4In this work, we complement the Born electroweak cross section with a threshold factor for the heavy

quarks (and antiquarks)

σ0,q(q
2) → σ0,q(q

2)

„

1 +
2m2

q

q2

«

s

1 −
4m2

q

q2
,

for q = c, b. Its numerical impact is, however, negligible at the energies considered here.
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When dealing with the type of convolution appearing in eqs. (2.5) and (2.6), it is

customary to introduce the Mellin transform

f(N) ≡
∫ 1

0
dxxN−1f(x) . (2.17)

We adopt the convention that, when N appears instead of x as the argument of a function,

we are actually referring to the Mellin transform of the function. The Mellin transform of

the factorization formula (2.5) is given by

σQ(N, q2,m2) =
∑

i

Ci(N, q2, µ2) Di(N,µ2,m2) , (2.18)

where

σQ(N, q2,m2) ≡
∫ 1

0
dxxN−1 dσ

dx
(x, q2,m2) , (2.19)

and the Mellin transform of the Altarelli-Parisi evolution equation (2.6) at NLO is

dDi(N,µ2,m2)

d log µ2
=

∑

j

ᾱs(µ
2)

[

P
(0)
ji (N) + ᾱs(µ

2)P
(1)
ji (N)

]

Dj(N,µ2,m2) . (2.20)

2.2 Soft logarithms

Both a
(1)
q and d

(1)
Q contain terms associated to the emission of a soft (and collinear) gluon,

These terms give rise to a large-N growth of the corresponding Mellin transforms

a(1)
q (N, q2, µ2) = CF

[

ln2 N +

(

3

2
+ 2γE − 2 ln

q2

µ2

)

ln N + αq + O (1/N)

]

, (2.21)

d
(1)
Q (N,µ2

0,m
2) = CF

[

−2 ln2 N + 2

(

ln
m2

µ2
0

− 2γE + 1

)

ln N + δQ + O (1/N)

]

, (2.22)

where γE = 0.5772 . . . is the Euler constant and

αq =
5

6
π2 − 9

2
+ γ2

E +
3

2
γE +

(

3

2
− 2γE

)

log
q2

µ2
, (2.23)

δQ = 2 − π2

3
+ 2γE − 2γ2

E −
(

3

2
− 2γE

)

ln
m2

µ2
0

. (2.24)

In ref. [2], the all-order resummation of the large (ln N) contributions has been performed

to next-to-leading log accuracy, that is, all logarithms of the form αn
S lnn+1 N (leading

logarithms) and αn
S lnn N (next-to-leading logarithms) have been correctly resummed. In

the following we summarize the results of ref. [2].

The Sudakov resummation factor for the e+e− coefficient function can be written as

∆S
q (N, q2, µ2) = exp

[

ln N g(1)(λ) + g(2)(λ)
]

, (2.25)

where

g(1)(λ) =
A(1)

πb0λ
[λ + (1 − λ) ln(1 − λ)] , (2.26)

– 6 –
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g(2)(λ) =
A(1)b1

2πb3
0

[

2λ + 2 ln(1 − λ) + ln2(1 − λ)
]

(2.27)

+

(

B(1) − 2A(1)γE

)

2πb0
ln(1 − λ)

− 1

πb0
[λ + ln(1 − λ)]

(

A(2)

πb0
− A(1) ln

q2

µ2

)

− A(1)

πb0
λ ln

q2

µ2
,

and where

b0 =
11CA − 4TF nf

12π
, b1 =

17C2
A − 10CATF nf − 6CFTF nf

24π2
(2.28)

are the first two coefficients of the QCD β-function, and

A(1) = CF , A(2) =
1

2
CF K =

1

2
CF

[

CA

(

67

18
− π2

6

)

− 5

9
nf

]

, (2.29)

B(1) = −3

2
CF . (2.30)

The variable λ is defined by

λ ≡ b0 αS(µ
2) ln N . (2.31)

The number of quark flavours in b0 and b1 is set to the number of active flavours at the

scale µ, i.e. typically four for charm production below or near the bottom threshold, and

five for charm or bottom production above the bottom threshold.

The presence in the resummed expressions of log(1 − λ) gives rise to a cut singularity

starting at the branch point

NL
q = exp

(

1

b0αS(µ2)

)

' µ2

Λ2
QCD

. (2.32)

This singularity is related to the divergent behaviour of the running coupling αS(µ
2) near

the Landau pole at µ ' ΛQCD, and signals the onset of non-perturbative phenomena at

very large values of N or, equivalently, when x is very close to its threshold value 1. This

translates into an unphysical behaviour of the resummed perturbative result in this region.

In Section 2.3 we describe how we have dealt with this issue.

Similarly to what has been done for the quark coefficient function, in ref. [2] the

Sudakov-resummed expression for the initial condition of the fragmentation function has

also been derived, yielding a result similar to eq. (2.25). To NLL accuracy we have

∆S
ini(N,µ2

0,m
2) = exp

[

lnN g
(1)
ini (λ0) + g

(2)
ini (λ0)

]

, (2.33)

with

g
(1)
ini (λ0) = − A(1)

2πb0λ0
[2λ0 + (1 − 2λ0) ln(1 − 2λ0)] , (2.34)

g
(2)
ini (λ0) =

A(1)

2πb0

(

ln
µ2

0

m2
+ 2γE

)

ln(1 − 2λ0)

– 7 –
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−A(1)b1

4πb3
0

[

4λ0 + 2 ln(1 − 2λ0) + ln2(1 − 2λ0)
]

+
1

2πb0
[2λ0 + ln(1 − 2λ0)]

(

A(2)

πb0

)

+
H(1)

2πb0
ln(1 − 2λ0) , (2.35)

and

H(1) = −CF , λ0 ≡ b0 αS(µ
2
0) ln N . (2.36)

The number of quark flavours in b0 and b1 for the Sudakov resummation factor of the initial

condition is set to the number of light flavours at the scale µ0 ' m, i.e. three for charm

and four for bottom. Note that, for ease of notation, both in eq. (2.25) and (2.33) the

renormalization and the factorization scales have been taken equal. The full expressions

for the Sudakov factors can be found in [2].

Analogously to eq. (2.25), the Sudakov-resummed part ∆S
ini of the heavy-quark initial

condition also has cut singularities in the complex variable N . In the heavy-quark case the

singularities start at the branch-point

NL
ini = exp

(

1

2 b0αS(µ2
0)

)

' µ0

ΛQCD

, (2.37)

i.e. at λ0 = 1/2 in eqs. (2.34) and (2.35). Again, we defer to Section 2.3 the discussion of

this problem.

For later convenience, we introduce here the expansions up to order αS of ∆S
q and ∆S

ini,

defined in eqs. (2.25) and (2.33)

∆S
q (N, q2, µ2) = 1 + ᾱs(µ

2)
[

∆S
q (N, q2, µ2)

]

αS
+ O

(

α2
S

)

, (2.38)

∆S
ini(N,µ2

0,m
2) = 1 + ᾱs(µ

2
0)

[

∆S
ini(N,µ2

0,m
2)

]

αS
+ O

(

α2
S

)

, (2.39)

where
[

∆S
q (N, q2, µ2)

]

αS
= CF

[

ln2 N +

(

3

2
+ 2γE − 2 ln

q2

µ2

)

ln N

]

, (2.40)

[

∆S
ini(N,µ2

0,m
2)

]

αS
= CF

[

−2 ln2 N + 2

(

ln
m2

µ2
0

− 2γE + 1

)

ln N

]

. (2.41)

Note that they differ from the exact coefficient function of eq. (2.21) and from the initial

condition for the fragmentation function of eq. (2.22) only by terms finite in the large-N

limit.

In order to merge the NLL-resummed and the NLO expressions without double-

counting O (αS) logarithmic terms, we define the Sudakov-resummed expressions for the

coefficient function and initial condition in the so-called ‘log-R matching scheme’ as

Cres
q (N, q2, µ2) = ∆S

q (N, q2, µ2)

× exp
{

ᾱs(µ
2)

[

a(1)
q (N, q2, µ2) −

[

∆S
q (N, q2, µ2)

]

αS

]}

σ0,q(q
2), (2.42)

Dres
Q (N,µ2

0,m
2) = ∆S

ini(N,µ2
0,m

2)

× exp
{

ᾱs(µ
2
0)

[

d
(1)
Q (N,µ2

0,m
2) −

[

∆S
ini(N,µ2

0,m
2)

]

αS

]}

. (2.43)
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This matching prescription differs from the one employed in ref. [2] (see eqs. (36) and

(76) there). However, since the exponents in the exponentials in eqs. (2.42) and (2.43) are

small (i.e. do not contain large logarithms and are of order αS), the exponentials can also

be expanded without loss or gain of accuracy, giving rise to different - but equivalent -

matching prescriptions, among which that of ref. [2].

2.3 The large-N region

We have previously remarked how the soft-gluon resummation factors ∆S
q and ∆S

ini contain

singularities at large N which signal the eventual failure of perturbation theory and hence

the onset of non-perturbative phenomena. The matching of perturbative results with non-

perturbative physics is a delicate problem, which rests, first of all, on a proper definition

of the perturbative series.

One way to address this problem is to work in the framework of infra-red renormalons.

In ref. [21], the perturbative series is first improved by addition of all subleading logarithms

αn
S lnk N , with k ≤ n + 1, in the so-called large-β0 approximation. The asymptotically

divergent series is subsequently regulated either by truncation at the smallest term or

with a Cauchy principal-value prescription of its Borel antitransform. This also implicitly

defines non-perturbative terms which can be cast in the form of power corrections, hence

allowing to relate charm and bottom hadronization. This procedure makes maximal use

of the insight that can be gleaned from perturbative QCD. However, it will be shown in

Section 6 how charm fragmentation data at Υ(4S) (10.6 GeV) and Z0 (91.2 GeV) energies

cannot be described simultaneously within perturbation theory. Without a more specific

understanding of the origin of this problem, it would appear premature to even attempt

to relate rigorously the charm and bottom non-perturbative fragmentation functions.

The large-N (or x → 1) limit involves the matching of perturbative and non-perturba-

tive physics. In the case of the initial condition for the fragmentation function, the region

where (1 − x)m ≈ Λ (i.e. m/N ≈ Λ in moment space) is sensitive to the decay of excited

states of the heavy-flavoured hadrons, and is thus controlled by non-perturbative physics.

In the case of the coefficient functions, when (1−x)Q2 ≈ Λ2, the mass of the recoil system

approaches typical hadronic scales. In the present work, we do not attempt a rigorous

formulation of the perturbative/non-perturbative matching problem and of the ensuing

description of the non-perturbative terms.5 We instead simply look for a formulation of

the resummation prescription that

(i) is consistent with all known perturbative results,

(ii) yields physically acceptable results,

(iii) does not introduce power corrections larger than generally expected for the processes

in question, i.e. NΛ/m for the initial condition [23 – 25, 21] and NΛ2/q2 for the

coefficient functions [26], where Λ is a typical hadronic scale of a few hundreds MeV.

5Such a rigorous separation has been investigated, for example, in ref. [22], in the framework of deep

inelastic scattering.

– 9 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
6

In detail, as far as the coefficient function is concerned, we make the following replace-

ment in eq. (2.31) (and hence (2.25) and (2.40))

N → N
1 + f/NL

q

1 + f N/NL
q

, (2.44)

where NL
q is given in eq. (2.32) and f is a parameter not smaller than one, but of order

one. For N ¿ NL
q , the replacement (2.44) amounts to a tower of power corrections to N ,

starting with f(N − 1)/NL
q ≈ f(N − 1)Λ2

QCD/µ2, consistently with items (i) and (iii) listed

above. Furthermore, for large N , the replacement (2.44) becomes N → NL
q /f . Thus, with

this replacement, the functions g(1/2) of eqs. (2.26) and (2.27) have no singularities in the

half plane Re(N) > 0, so that item (ii) above is also fulfilled.

For the initial condition, we apply the same prescription of eq. (2.44) in eq. (2.36) (and

hence (2.33) and (2.41)), replacing NL
q with NL

ini (defined in eq. (2.37))

N → N
1 + f/NL

ini

1 + f N/NL
ini

. (2.45)

In this case, the replacement amounts to a tower of power corrections starting with f(N −
1)/NL

ini ≈ f(N − 1)ΛQCD/µ0, and for large N the branch cut in eqs. (2.34) and (2.35) is

never reached.

The Landau singularity is regulated if f ≥ 1. For f below 1 the effect of the Landau

pole should be visible. We plot in figure 1 the results of varying the f parameter (f = 0, i.e.

no regulator, 0.5, 1 and 1.5), together with the pure perturbative result, without Sudakov

resummation. First of all, we notice the tiny cusp due to the Landau singularities, located

around N ≈ 7.2, consistently with eq. (2.37). The moments become negative (and therefore

unphysical) after the cusp. With increasing f , the cusp is displaced to larger values of N ,

until it disappears for f = 1. The fixed order cross section also changes sign at N ≈ 11,

larger than NL
ini. This is consistent with the large N behaviour of d

(1)
Q shown in eq. (2.22),

such that DQ(N) becomes negative when

N ≈ exp

√

π

CFαS(m2)
. (2.46)

However, for small enough αS, this value should be parametrically smaller than NL
ini. In

the case of charm production, this does not happen, reminding us that we are at the limit

of validity of perturbation theory. A more consistent behaviour is observed in the bottom

case, figure 2. In this figure, the pattern of improvement towards the large-N region,

when going from the purely-perturbative initial condition without soft gluon resummation,

to the inclusion of soft-gluon effects, and then to the addition of the non-perturbative

regularization, is clearly visible.

We conclude our discussion with the following remarks. We have found that, while for

bottom production the NLO result, the inclusion of Sudakov effects and the regularization

of the Landau singularities follow numerically the correct pattern of improvements, in the

case of charm production the inclusion of Sudakov effects induces a worse large-N behaviour

– 10 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
6

Figure 1: Moments of the perturbative fragmentation function for charm production at
√

q2 =

10.6 GeV with and without soft-gluon resummation with different values of f , eqs. (2.44) and (2.45),

in the regularization of the Landau pole singularities.

Figure 2: As in figure 1 for bottom production at
√

q2 = 91.2 GeV.
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of the cross section, signaling the imperfect applicability of perturbation theory in this case.

Nevertheless, in both cases we have shown that we can obtain a sensible physical result

with formulae that are consistent with all known results in perturbative QCD, and modest

power suppressed effects according to the item (iii). We will thus apply our procedure to

the fits of charm and bottom data. We will use the value f = 1.25 in our fits, since we

found that good fits can be obtained with this choice. We remark that the parameters of

the non-perturbative fragmentation function that we obtain in our fits do depend upon the

choice of f , to an extent that can be inferred from Figs. 1 and 2. It is also clear that, for

moments around N ≈ 5, the effect of the inclusion of a regulated Sudakov is modest. We

will discuss in Section 8 the implications of this fact for hadronic cross sections.

2.4 The bottom threshold

In analogy with parton distribution functions, also parton fragmentation functions obey

matching conditions when crossing heavy-flavour thresholds. In ref. [10], we have computed

these matching conditions at next-to-leading order in the strong coupling constant αS in

the MS scheme. We obtain, neglecting O(α2
S) corrections

D
(nf)

Q/Q̄
(x, µ2

thr,m
2
thr)=

∫ 1

x

dy

y
Dg(x/y, µ2

thr,m
2
thr)

×αS

2π
CF

1 + (1 − y)2

y

[

log
µ2

thr

m2
thr

− 1 − 2 log y

]

(2.47)

D(nf)
g (x, µ2

thr,m
2
thr)=D(nL)

g (x, µ2
thr,m

2
thr)

(

1 − TFαS

3π
log

µ2
thr

m2
thr

)

(2.48)

D
(nf)

i/̄i
(x, µ2

thr,m
2
thr)=D

(nL)

i/̄i
(x, µ2

thr,m
2
thr) for i = q1, . . . qnL

, (2.49)

where nL = nf − 1 is the number of light flavours. Since, in the present paper, we are

interested in the evolution of charm fragmentation function from lower scales, of the order of

the charm mass, to higher scales, these matching conditions should be used for consistency

when crossing the bottom threshold.

In this framework, at low energies (i.e. not much above the charm mass), the charm is

treated as a heavy quark, in order to provide a perturbative expression for its fragmentation

function. Near the bottom threshold, the bottom is treated as heavy, while all other quarks

(including charm) are considered light.

2.5 Simplified evolution scheme

For the phenomenological analysis performed in the present work, we have numerically

solved the full set of evolution equations. It turns out, however, that, for the case of charm

production at Υ(4S) energies, the contribution coming from gluon-splitting processes is

fully negligible. Our results, in this case, can thus be obtained in a simplified framework,

where only the Pqq splitting function is kept. The Mellin transform of Pqq can be performed

analytically, and one can work with nL flavours, since the annihilation energy is of the order
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of the bottom mass. The evolution equation has the simple solution

E(N,µ2, µ2
0) = exp

{

log
αS(µ

2
0)

αS(µ2)

P
(0)
qq (N)

2πb0

+
αS(µ

2
0) − αS(µ

2)

4π2b0

[

P (1)
qq (N) − 2πb1

b0
P (0)

qq (N)

]

}

. (2.50)

Our final formula for the cross section, neglecting singlet contributions, is then, using

eqs. (2.42), (2.43) and (2.50)

σQ(N, q2,m2) = Cres
q (N, q2, µ2)E(N,µ2, µ2

0)Dres
Q (N,µ2

0,m
2) . (2.51)

The Mellin transforms for a
(1)
q , d

(1)
Q and P

(1)
qq are given in formulae (A.12), (A.13) and (A.20)

of ref. [1].6

3. Electromagnetic initial-state radiation

Electromagnetic initial-state radiation (ISR) can significantly affect the single-inclusive

distribution of charmed mesons. At CLEO and BELLE energies, the hadronic cross section

decreases as the inverse of the squared mass of the hadronic system. Initial-state photon

radiation is suppressed by a factor of αem, enhanced by a log s/m2
e (me being the electron

mass), and, depending upon how much energy is radiated away, due to the lower hadronic

mass, it is enhanced by a larger hadronic cross section. The shape of the fragmentation

function is also affected, since a consistent fraction of events takes place at lower hadronic

invariant mass. CLEO and BELLE do not correct their data for initial-state radiation, so,

in order to perform a meaningful fit to the fragmentation function, we have to take it into

account.

We correct the initial distributions of measured inclusive cross sections bin by bin, i.e.

we find, by an iterative procedure, a new distribution that reproduces the measured one

after ISR has been implemented. More specifically: calling xi, i = 1, . . . n, the centre of

the bins of the experimental distribution, we find a distribution Dc(x) (where the suffix

c stands for“corrected”) that is continuous, vanishes at x = 0 and x = 1, and is linear

in all intervals (0, x1), (x1, x2), . . . , (xn−1, xn), (xn, 1), such that, when ISR corrections are

applied, we reproduce the measured distribution.

We model ISR in the following way. We assume for the radiated electromagnetic energy

the distribution [27 – 30]
dP

dz
= δβ(1 − z)β−1 − β

2
(1 + z) , (3.1)

where

β = 2
αem

π

[

log
s

m2
e

− 1

]

, δ = 1 +
3

4
β +

αem

π

(

π2

3
− 1

2

)

, z =
shad

s
, (3.2)

6We point out that there is an obvious misprint in ref. [1], where formula (A.7) should be replaced by

ψm(x) =
dm+1 log Γ(x)

dxm+1
.
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s = q2 being the squared centre-of-mass (CM) energy, and shad the square of the invariant

hadronic mass. The kinematic distribution of the hadronic system is assumed to be as

if only a single photon, collinear to either the electron or the positron, was radiated.

This assumption neglects double radiation, which gives effects of the order β2, and the

transverse momentum of the radiated photon, which is typically much smaller than the

available energy. We use the Born cross section for the heavy-quark production in the

hadronic reference frame. The value of x in the laboratory frame is obtained by a Lorentz

boost. In summary

D(xi) =

∫ 1

4m2
h

s

dz

∫

dy d cos θ
1

σ0(s)

dσ0(zs, cos θ)

d cos θ

dP

dz
Dc(y) δ(xi − x(z, y, θ)) , (3.3)

where x(z, y, θ) is the momentum fraction of the heavy flavoured hadron (of mass mh) in

the e+e− CM frame. It is obtained as follows. We define the momentum components of

the hadron in the hadronic CM system

ph =
y

2

√

sz − 4m2
h , p0

h =
√

p2
h + m2

h, p
‖
h = ph cos θ , (3.4)

so that y is its momentum fraction. Then we boost it to the e+e− CM frame. Under our

assumptions (that all the electromagnetic energy is collinear either to the electron or to the

positron, and that double radiation and the photon transverse momentum are negligible)

the boost velocity is purely longitudinal, and is given by v = (1 − z)/(1 + z). The hadron

momentum in the e+e− CM frame is then

p0 =
p0

h + vp
‖
h√

1 − v2
, p =

√

p2
0 − m2

h , (3.5)

and

x(z, y, θ) =
p

√

s/4 − m2
h

. (3.6)

We use for σ0 the exact Born cross section in the massless limit. Since asymmetries cancel

in eq. (3.3), we always assume the angular dependence

1

σ0(s)

dσ0(zs, cos θ)

d cos θ
=

σ0(zs)

σ0(s)

3

8

(

1 + cos2 θ
)

. (3.7)

We do, however, supply the threshold factor to the total cross section. Thus, near the

Υ(4S) we have

σ0(zs)

σ0(s)
=

θ(zs − 4m2
h)

z

(

1 + 2m2

sz

)
√

1 − 4m2

sz
(

1 + 2m2

s

)
√

1 − 4m2

s

. (3.8)

We checked that the effect of finite mass corrections to the angular distribution, the use

of mh instead of the quark mass m in the threshold factor, as well as the scaling violations

in the fragmentation function due to the reduced (i.e. s → sz) CM hadronic energy, have

a negligible impact on our results.
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Figure 3: Left: the effect of the ISR correction on BELLE data for D∗+ → D0π+. Right: the

same data in moment space, shown together with the ALEPH ones.

The effect of the ISR correction is displayed in figure 3, where BELLE data for D∗+ →
D0π+ are displayed before and after the ISR correction has been applied, both in x and

moment space. The ALEPH data are also shown in moment space. We see that the

corrected spectrum for BELLE is harder and lower in normalization than the uncorrected

one. This is to be expected, since ISR lowers the available hadronic energy, thus softening

the spectrum and increasing the cross section at the same time. We can also see that

the effect for BELLE is not large, but nonetheless not negligible. It is instead much less

prominent, up to the point of being negligible, for the ALEPH data taken on the Z0 peak,

as expected.

4. Non-perturbative fragmentation function

In the heavy-quark fragmentation-function formalism, the largest non-perturbative effects

come from the initial condition, since one expects power corrections of the form Λ/m.

We assume that all these effects can be described by a non-perturbative fragmentation

function DNP, that takes into account all low-energy effects, including the process of the

heavy quark turning into a heavy-flavoured hadron, that has to be convoluted with the

perturbative cross section. Thus, the Mellin transform of the full resummed cross section,

including non-perturbative corrections, is

σH(N, q2) = σQ(N, q2,m2)DNP(N) . (4.1)

We have attempted to fit CLEO and BELLE D∗ data using several forms for DNP. We

found that the best fits are obtained with the two-component form

DNP(x) = Norm. × 1

1 + c

[

δ(1 − x) + cN−1
a,b (1 − x)axb

]

, (4.2)

with

Na,b =

∫ 1

0
(1 − x)axb . (4.3)
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This form is a superposition of a maximally hard component (i.e. the delta function) and

the form proposed in ref. [31]. It can be given a simple phenomenological interpretation,

the hard term corresponding in some sense to the direct exclusive production of the D∗,

and the Colangelo-Nason form accounting for D∗’s produced in the decay chain of higher

resonances.

Following the approach of ref. [32], we assume that the D meson non-perturbative

fragmentation function is the sum of a direct component, which is isospin invariant, plus

the component arising from the D∗ decay. The decay D∗ → Dπ is very close to threshold,

so that the D has the same velocity of the D∗, and their momenta are thus proportional to

their masses. Under these circumstances, the component of the D fragmentation function

arising from D∗ → Dπ decays is given by

B(D∗ → Dπ) D̃D
π (x) , (4.4)

where we have defined

D̃D
π (x) = DD∗

NP

(

x
mD∗

mD

)

mD∗

mD
θ

(

1 − x
mD∗

mD

)

, (4.5)

and B(D∗ → Dπ) is the branching ratio of D∗ → Dπ. Observe that D̃D
π has been defined

so as to have the same normalization as DD∗

NP. In N space we obtain immediately

D̃D
π (N) = DD∗

NP(N)

[

mD

mD∗

]N−1

. (4.6)

For the D∗ → Dγ decay, in the D∗ frame, the D has non-negligible velocity, but it

is non-relativistic. We call θ its decay angle with respect to the D∗ direction, and pD its

momentum

pD =
m2

D∗ − m2
D

2mD∗
. (4.7)

We call β the D∗ velocity and γ = 1/
√

1 − β2. Thus, the longitudinal component of the

D momentum in the laboratory frame is given by a Lorentz boost

γ (pD cos θ + βmD) , (4.8)

where we have neglected terms of order p2
D. Thus the component of the D fragmentation

function coming from D∗ → Dγ decay is given by

B(D∗ → Dγ) D̃D
γ (x) , (4.9)

with

D̃D
γ (x) =

∫

dy
d cos θ

2
DD∗

NP(y) δ

(

γ(pD cos θ + βmD)

pmax
− x

)

, (4.10)

where pmax is the maximum D momentum in the laboratory. Since we always consider the

ultra relativistic limit, we have

y =
γmD∗

pmax
, β → 1 , (4.11)
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D (mass in GeV) branching ratios

D∗0(2006.7 ± 0.4) → D0π0 0.619 ± 0.029

→ D0γ 0.381 ± 0.029

D∗+(2010.0 ± 0.4) → D0π+ 0.677 ± 0.005

→ D+π0 0.307 ± 0.005

→ D+γ 0.016 ± 0.004

D0(1864.5 ± 0.4) → K−π+ 0.0381 ± 0.0009

D+(1869.3 ± 0.4) → K−π+π+ 0.092 ± 0.006

Table 1: Charm hadron masses and branching ratios.

so that we obtain

D̃D
γ (x) =

∫

dy
d cos θ

2
DD∗

NP(y) δ

(

y(pD cos θ + mD)

mD∗
− x

)

. (4.12)

The double integral cannot be performed in closed form. However, it is easy to obtain the

moments

D̃D
γ (N) = DD∗

NP(N)

∫

d cos θ

2

[

pD cos θ + mD

mD∗

]N−1

= DD∗

NP(N)
mD∗

2pD

(mD + pD)N − (mD − pD)N

NmN
D∗

. (4.13)

We thus describe D+/0 production as the sum of a primary (i.e. not coming from D∗

decays) component, plus the contributions coming from D∗ decays

DD+

NP (x) = DD+,p
NP (x) + B(D∗+ → D+π0)D̃D+

π (x)

+B(D∗+ → D+γ)D̃D+

γ D(x) , (4.14)

DD0

NP(x) = DD0,p
NP (x) + [B(D∗+ → D0π+) + B(D∗0 → D0π0)]D̃D0

π (x)

+B(D∗0 → D0γ)D̃D0

γ (x) . (4.15)

We took the value of masses and branching ratios from ref. [33]. For reference, we report in

table 1 the values we used for the masses and for the decay rates of the charmed mesons.

5. D mesons data fits near the Υ(4S)

Several parameters enter our calculations. First of all, at all matching points, there are

scale choices that could be varied, to yield a perturbative uncertainty in our result. Those

are the initial evolution scale µ0, the matching scale for the crossing of the b threshold µthr,

and the final evolution scale µ. In the present work we fix

µ0 = m , µ =
√

q2 , µthr = mthr = mb . (5.1)

These scales could, in principle, be varied by a factor of order two around the values

listed above, yielding a sensibly different result. However, in general, the scale variation
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Eq. (4.2): a = 1.8 ± 0.2, b = 11.3 ± 0.6, c = 2.46 ± 0.07, total χ2 = 139

Set (C) D∗+ (B) D∗+ → D0 (B) D∗+ → D+ (C) D∗0 (B) D∗0

Norm. 0.238 0.253 0.227 0.225 0.211

χ2/pts 33/16 63/46 13/46 13/16 17/46

Table 2: Results of the fit to D∗ CLEO (C) and BELLE (B) data. The last line reports the χ2

over the number of fitted points for each data set.

will simply result in different values for the fitted parameters of the non-perturbative

form. When computing cross sections for different processes, one should then use the

parametrization appropriate for the scale choice that has been made in the fit, hence

compensating for the change. In the present work we will not pursue this issue further,

since our aim is simply to show that a fit within QCD is possible. A similar remark applies

to the value of ΛQCD and the quark masses, that we will fix at

Λ
(5)
QCD = 0.226 GeV , mc = 1.5 GeV , mb = 4.75 GeV . (5.2)

The CLEO and BELLE data are given as absolute cross sections. Since we correct the data

for ISR effects, we should normalized our data to the e+e− charm cross section corrected

for ISR effects. We thus use the value of R(e+e−) reported in ref. [34], defining

σc(s) = σ
(0)
µ+µ−(s) × 3.56 × 0.4 × 2 , (5.3)

where σ
(0)
µ+µ−(s) = 86.86 nb /s is the Born cross section for e+e− → µ+µ−, 3.56 is the value

of R measured by CLEO, 0.4 is the charm fraction, and the factor of 2 allows for the

counting of both charge conjugate states.

We have fitted all D∗+ and D∗0 data with the same set of parameters, except for the

normalization, which is kept independent for each data set. This procedure is justified,

since the errors in the data do not include overall errors that do not affect the shape of the

fragmentation function. We have limited ourselves to the fit range 0.2 < x < 1 for CLEO

and 0.08 < x < 1 for BELLE. In the case of BELLE data, we use only the continuum

sample for x < 0.5, and for x > 0.5 we combine the continuum and the on-resonance

sample in the following way

y =
yc/s

2
c + yr/s

2
r

1/s2
c + 1/s2

r

, s =
1

√

1/s2
c + 1/s2

r

, d =
dc/s

2
c + dr/s

2
r

1/s2
c + 1/s2

r

, (5.4)

where yc/r, sc/r and dc/r are the central value, the statistical error and the systematic

error of the continuum/on-resonance data, and y, s and d are our combined central value,

statistical error and systematic error. For all data sets we combine the statistical and

systematic errors in quadrature.

The result of the fit is reported in table 2 and in figures 4–8 we show the data and the

fitted curve, both in x and moment space.

A considerable part of D’s are produced indirectly through D∗ decays. Here we assume

that both D∗’s and the D’s that are not the product of D∗ decay are produced with a
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Figure 4: Fit to CLEO D∗+ data.

Figure 5: Fit to BELLE D∗+ → D0 data.

charge-independent rate. Under this assumption, the fraction of “direct” (meaning not

arising from D∗) and “indirect” (from D∗) D mesons are in relative proportion of 0.473 to

0.527. These numbers can be extracted from the total production cross section of charmed

mesons reported in ref. [3], and from table IX of ref. [4]. We then use the parametrization

of table 2 for the D∗ production, the branching ratios for D∗ → D decays given in table 1

and a description of the decay as detailed in Sec. 4.

We parametrize the direct D component with the same form used for the D∗, and fit

it to the D+ production data, where a larger fraction of direct D is expected. We then use

the fitted direct D parametrization to describe the direct part of the D0 production data.

In all cases, the overall normalization is chosen for a best fit to each data set, in order to

be insensitive to overall normalization differences.

The result of the fit for the D+/0 mesons is reported in table 3. In figures 9–12 we

show the data and the fitted curve, both in x and moment space.
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Figure 6: Fit to BELLE D∗+ → D+ data.

Figure 7: Fit to CLEO D∗0 data.

Eq. (4.2): a = 1.1 ± 0.1, b = 7.6 ± 0.6, c = 4.6 ± 0.2

total χ2 = 50 total χ2 = 109

Set (C) D+ (B) D+ (C) D0 (B) D0

Norm. 0.263 0.270 0.609 0.598

χ2/pts 14/16 36/46 32/16 77/46

Table 3: Results of the fit to D CLEO (C) and BELLE (B) data. The fit was performed over the

D+ data only, that are more sensitive to the direct component, and then used to describe D0 data.

6. D mesons data fits on the Z
0

In this work we use the data from the ALEPH collaboration [11], which are the most precise

ones. These data are affected by electromagnetic initial-state radiation as well. However,

unlike the Υ(4S) case, the ISR does not appreciably distort the spectrum, but it mostly

affects the total cross section. This is easily understood: any appreciable amount of ISR on
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Figure 8: Fit to BELLE D∗0 data.

Figure 9: Fit to CLEO D+ data.

the Z0 peak brings the reaction off resonance, to a vanishing cross section. Thus, the bulk

of heavy flavour production always takes place on the Z0 peak. Conversely, at the Υ(4S)

energy, the ISR generates processes with higher cross section and a lower hadronic invariant

mass. Since the ALEPH data are normalized to the total number of hadronic events, the

effects of ISR largely cancel in the ratio. We shall anyway perform the correction for ISR

for these data as well.

In figure 13 we display our fit with ALEPH data. We fit the data in the region

x ∈ [0.4, 1] using the non-singlet component only, since a subtraction of the gluon-splitting

contributions was performed by ALEPH. Observe that, in this calculation, the bottom-

threshold crossing has to be dealt with, according to the discussion of Section 2.4. We also

show, for comparison, the full evolution result (dashed line), using the same parameters

obtained in the non-singlet fit. As we can see, the difference is only visible at small x. The
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Figure 10: Fit to BELLE D+ data.

Figure 11: CLEO D0 data and the best fit extracted from D+ data.

result of the fit for the non-perturbative parameters is

a = 2.4 ± 1.2 , b = 13.9 ± 5.7 c = 5.9 ± 1.7 , (6.1)

with a χ2 = 4.2 for 13 fitted points. These results are not really consistent with those for

the Υ(4S) data in Tab. 2.

In order to better quantify the discrepancy between eq. (6.1) and table 2 we use the

parametrization of CLEO and BELLE data to predict the D∗ fragmentation function at

LEP energies. The LEP prediction, using the parametrization of table 2, is reported in

figure 14 together with ALEPH data. We observe that the fitted normalization is very

close to the CLEO D∗+ normalization. We find a χ2 = 60.1 (for 13 fitted points) for
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Figure 12: BELLE D0 data and the best fit extracted from D+ data.

Figure 13: ALEPH D∗+ data and the result of our non-singlet fit (solid line). The dashed line

represents the result obtained using full evolution.

this parametrization. Thus, the description is not satisfactory, especially in the large-x

(large-N) region.

In figure 15 we show the ratio of the moments of ALEPH D∗+ data over our prediction.

We observe that the N dependence of the ratio is well described by the functional form

1

1 + 0.044 (N − 1)
, (6.2)

where, since the first moment of the non-singlet distribution should be exactly given by

the theory (because of charge conservation), we normalize to one the extrapolation of the

data to N = 1.
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Figure 14: ALEPH D∗+ data, compared to the QCD prediction.

Figure 15: ALEPH D∗+ data, compared to the QCD prediction.

We can only speculate about the possible origin of the discrepancy and the form of the

coefficient of (N − 1) in eq. (6.2). Assuming that we are dealing with a non-perturbative

correction to the coefficient function of the form

1 +
C(N − 1)

q2
, (6.3)
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this would lead to the extra factor

1 + C(N−1)
M2

Z

1 + C(N−1)
M2

Υ

, (6.4)

(where MZ and MΥ are the Z0 and Υ(4S) mass) to be applied to our prediction for the

ALEPH data. For C = 5 GeV2 we reproduce the behaviour of eq. (6.2). In ref. [26], on the

basis of a calculation of infra-red renormalon effects, a 1/q2 power correction is found, with

an N dependence marginally compatible with (6.3). No 1/E correction is found. ref. [35]

also predicts a leading 1/E2 power correction. However, the C ≈ 5 GeV2 coefficient would

appear to be somewhat too large.7 Alternatively, if we admitted the existence of corrections

to the coefficient functions of the form

1 +
C(N − 1)

E
, (6.5)

then we would find C ≈ 0.52 GeV, a much more acceptable value. We observe that a form

(

1 +
C

E

)N−2

≈ 1 +
C(N − 2)

E
(6.6)

was required in ref. [12] to fit light-hadron fragmentation data.

Demonstrating the absence (or the existence) of 1/E corrections in fragmentation

functions would be a very interesting result, since it would help to validate or disprove

renormalon-based predictions. Unfortunately, the low precision of the available data does

not allow, at the moment, to resolve this issue.

We would like to remark that the discrepancy between the CLEO/BELLE and ALEPH

data exclusively depends upon the evolution between the Υ(4S) and Z0 energies. The

method we used to describe the CLEO/BELLE data (i.e. the perturbative calculation of the

fragmentation function, the Sudakov effects in the initial conditions and the parametriza-

tion of the non-perturbative part) does not affect the conclusions of the present section. In

fact, we can simply compute the ratio of the moments of the inclusive D∗+ (ISR corrected)

distribution at CLEO/BELLE and ALEPH, and compare it to the theoretical prediction.

The result of this comparison (where we have used, for simplicity, BELLE data only) is

displayed in figure 16. The curves are given by

σQ(N,M2
Z ,m2)

σQ(N,M2
Υ,m2)

=
āq(N,M2

Z , µ2
Z)

1 + αS(µ2
Z)/π

E(N,µ2
Z , µ2

Υ)
1 + αS(µ

2
Υ)/π

āq(N,M2
Υ, µ2

Υ)
(6.7)

where µZ and µΥ are the factorization scales and the evolution factor E is given in

eq. (2.50). Notice that low-scale effects, both at the heavy quark mass scale and at the

non-perturbative level, cancel completely in this ratio, making its prediction entirely per-

turbative. For āq, in the NLO results (dashed lines), we have used

āq(N, q2, µ2) = 1 + ᾱs(µ
2) a(1)

q (N, q2, µ2) , (6.8)

7If we believe that it is the maximum meson energy, not E, that controls power effects, than we would

have C ≈ 1 GeV2, a more acceptable value.
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Figure 16: The ratio of ALEPH and BELLE moments for the D∗+ fragmentation function,

compared to QCD evolution. The solid band is obtained with QCD NLO evolution and Sudakov

effects in the coefficient functions, while the dashed bands is NLO evolution only. The bands are

obtained by setting µZ/Υ = ξMZ/Υ and varying 1/2 < ξ < 2.

while for the full result (solid lines) we have included the NLL resummation of soft gluon

emission in the coefficient functions

āq(N, q2, µ2) = ∆S
q (N, q2, µ2)

×
{

1 + ᾱs(µ
2)

[

a(1)
q (N, q2, µ2) −

[

∆S
q (N, q2, µ2)

]

αS

]}

. (6.9)

The definitions of a
(1)
q and ∆S

q are given in Sections 2.1 and 2.2. We have set µZ/Υ = ξMZ/Υ

with ξ = 0.5, 2 to plot our bands. As we can see from the figure, the rather large scale

uncertainty displayed by the NLO result is much reduced when Sudakov effects are included.

In both cases, however, the data clearly undershoot the pure QCD prediction, being instead

compatible with the inclusion of the correction factor (6.2) (dotted lines). We have also

checked that our full result is essentially unchanged if, instead of formula (6.9), we use the

fully exponentiated formula (2.42). Furthermore, the change of variable given in eq. (2.44)

to deal with the Landau pole has very little impact on our curves. Using the very large

value Λ
(5)
QCD = 0.3GeV would lower the theoretical predictions by no more than 11% for

N ≤ 20, very far from explaining the observed effect.

The deconvolution of ISR effects, that hardens the Υ(4S) data, but is insignificant on

the Z0, widens the discrepancy. However, if we did not apply the deconvolution, the effect

would still be partially visible.
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Because of the relatively low energy of the data on the Υ(4S), it is legitimate to

wonder whether charm-mass effects could be responsible for the discrepancy between LEP

and Υ(4S) data. We have not included mass effects in the present calculation. However,

in ref. [36], mass effects in charm production on the Υ(4S) where computed at order α2
S,

and found to be small (see figure 1 in the reference8).

We thus believe that it is unlikely that mass effects could play an important role in

explaining this discrepancy.9

7. B mesons data fits on the Z
0

The same framework that yields good fits to D meson production data can also be used

to describe B meson production on the Z0. Accurate data have been published by the

ALEPH [5], OPAL [6] and SLD [7] Collaborations. Preliminary data are available from

DELPHI [8, 9]. We find that, to describe B production, the δ(1−x) term in eq. (4.2) is in

fact not needed, i.e. the c parameter tends to become very large in the fitting procedure.

In this limit the form of eq. (4.2) becomes a two parameter form, coinciding with that of

ref. [31]. In figure 17 we show the result of a simultaneous fit to ALEPH and SLD data.

In figure 18 we show the same best-fit curve together with the OPAL and DELPHI data.

The fit yields a = 24 ± 2 , b = 1.5 ± 0.2 with a χ2 = 43 for SLD and 51 for ALEPH for

21 and 19 data points respectively (for these data, bin-to-bin correlations provided by the

experimental Collaboration were also taken into account). We did not attempt to fit the

OPAL data together, since it was not clear to us how to handle the asymmetric, correlated

systematic errors given by OPAL. However, it is clear from figure 18 that also this data

set, as well as the preliminary data from DELPHI, is well described by the fit.10

8. Moment-space fits and power corrections

The fits presented so far have been performed on the measured x-space distributions, and

they were aimed at providing an accurate description of all the experimental data. This

has required a flexible parametrization for the non-perturbative fragmentation function,

leading to the choice of the three-parameter form given in eq. (4.2). The data are fitted

well in the large-x region, so that all moments of the fragmentation function are also well

reproduced. This is important, since, as noted in refs. [37, 38], heavy-flavour production

spectra in hadronic collisions are determined by a few Mellin moments (usually in the

8These results are given in x space. In the present work we have also computed the corresponding

moment-space corrections at order αS, and found effects of the order of 1% at N = 5, 4% at N = 11 and

7% at N = 20, very far from being able to explain the discrepancy.
9In refs. [23, 24], on the base of the analogy with the spacelike case, corrections of the form Λm/Q2 are

introduced. Assessing the importance of these corrections in the present framework would require further

investigation.
10Note that, while the ALEPH set refers specifically to B mesons, the SLD, DELPHI and OPAL data

are for all weakly decaying b-flavoured hadrons. The two quantities could therefore be slightly different,

due to the small fractions of Bs and B baryons (10% each, see ref. [33]). For an example of a quantitative

estimate see eq. (5.10) of ref. [9].
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Figure 17: Fit of the fragmentation function for B production together with ALEPH (upper)

and SLD (lower) data.

range N = 2, . . . 6) of the non-perturbative fragmentation function. This property was

successively exploited in refs. [39, 40, 32, 41] for predicting bottom and charm spectra

in pp̄ collisions. Inaccuracies in the description of the large-x region in e+e− annihilation

could therefore lead to large errors in the moments that are relevant to the hadroproduction

of heavy quarks. Conversely, in the framework of heavy-flavour production, an accurate

fit in x-space is unnecessary, as long as the moments are well fitted in the relevant range.

For this purpose, it is therefore convenient and sufficient to use for the non-perturbative

fragmentation function one-parameter functional forms that are commonly found in the

literature [42 – 44]. In the following discussion, we will focus upon these one-parameter

forms, and in particular on the one of ref. [42]

DNP(x) = (α + 1)(α + 2)xα(1 − x) . (8.1)

It is important to stress that the choice of a specific parametrization like this one is

exclusively a matter of convenience, aimed at easing the transfer of the non-perturbative

information from e+e− collisions to other processes. One can either choose a different func-

tional form, or even analyze the data in terms of non-perturbative moments DNP(N) only.
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Figure 18: The fragmentation function fitted to ALEPH and SLD B data shown here together

with OPAL and DELPHI data.

Figure 19: Moments of the non-perturbative component DNP(N) extracted from e+e− D∗ data,

and those of the fitted non-perturbative fragmentation function (4.2) with the parameters of table 2.

In figure 19, we show the moments DNP(N) extracted from e+e− data. The points in the

figure are obtained by taking the experimental values of the moments of the fragmentation
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Figure 20: Fits to D∗+ data for the parameter α of the parametrization (8.1).

function together with their errors, divided by the pure perturbative component of the

fragmentation function, computed with our default parameters.11 In the figure we also

show the non-perturbative component given by the form (4.2), with the parameters taken

from table 2. Also evident is the poor consistency between values obtained from data taken

on the Υ(4S) and on the Z0. This is, of course, the same situation already observed in

Section 6.

Using the Mellin transform of formula (8.1)

DNP(N) =
(α + 1)(α + 2)

(α + N)(α + N + 1)
, (8.2)

we can translate the moments in figure 19 into values for α with the appropriately prop-

agated error. The results are displayed in figure 20. From the figure we see that the

one-parameter form (8.1) does not describe perfectly the whole shape, as shown by the

non-constancy of α extracted from different moments. However, to a good degree of ap-

proximation a single value of α can describe all the moments up to N ' 6 or so. This

is enough for the purpose of using the fitted function for convoluting a pT distribution in

hadronic collisions.

8.1 Scaling property: from D to B mesons

Several theoretical arguments in refs. [23 – 25, 21] predict for the heavy-quark non-perturbative

11The perturbative fragmentation function for ALEPH is computed using the non-singlet component only,

since gluon-splitting contributions have been subtracted from the published experimental distribution.
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Figure 21: Fits to weakly decaying B’s data for the parameter α of the parametrization of

ref. [42].

fragmentation function the behaviour

DNP(x) ∝ f
(

(1 − x)
m

Λ

)

, (8.3)

where f is a function that vanishes when its argument becomes much larger than one, Λ

is a hadronic scale, and m is the mass of the heavy quark. This yields, in moment space,

the behaviour

DNP(N) = 1 − (N − 1)Λ/m

∫

f(z) z dz + O(Λ2/m2) . (8.4)

If DNP(N) depends upon a single parameter, its value can be linked to the ratio Λ/m. For

example, in the case of the form (8.2) the series expansion in powers of 1/α is given by

DNP(N) = 1 − (N − 1)
2

α
+ O

(

1

α2

)

. (8.5)

Reinterpreting α → 2m/Λ we will be able to check the behaviour of the leading power

correction. Using Λ ∼ 300 MeV, mc ' 1.5 GeV and mb ' 4.75 GeV, one expects to find

αD ∼ 10 and αB ∼ 30 when fitting D/D∗ and B mesons respectively. Whatever the exact

values are, it will always be possible to test for the predicted scaling law

αB

αD
' mb

mc
∼ 3 . (8.6)

To this end, we extract the value of α for B meson production at Z0 energy. In

figure 21 we show the fits to the four available data sets. All the data appear consistent

with each other. Within fairly large uncertainties (resulting from the non-constancy of α
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Figure 22: Values of α/m for D∗ and B mesons as a function of N .

through the fits to different moments, and the discrepancy between the determination of

αD at MΥ and MZ) we can see that the expectations are largely fulfilled, leading to an

αB/αD ratio of order 1.5 to 3. The tendency for values smaller than mb/mc = 3.17 might

be a consequence of a number of factors, like the B data being for “weakly decaying” B’s,

and therefore generally softer than the leading B∗ and B∗∗, or the mass entering the power

corrections being closer to the meson mass rather than the quark mass.

It is also worth noting that, given a value for αB ' 25, the expectations for the value of

the ratio are much better fulfilled if we use the αD fitted at the Z energy (αD ' 9) rather

than the one fitted at the Υ(4S) energy (αD ' 14), as shown in figure 22. This result mildly

supports the view that large non-perturbative corrections may affect the Υ(4S) data.

The results of figures 19 and 20 are also summarized in table 4, together with similar

results for the one-parameter forms of ref. [44] and with the popular PSSZ form [43].12

Results for B mesons are also shown in table 4.

12The values of ε that we find in this case are about one order of magnitude smaller than those usually

extracted from Monte Carlo simulations. They lead, therefore, to a harder non-perturbative fragmentation

function and hence to larger rates in hadronic collisions. It is moreover worth noting that the use of

the PSSZ fragmentation function in a context where non-perturbative corrections are expected to scale

like 1 − (N − 1)Λ/m is inconsistent. In fact, while the ε parameter can be interpreted as being of order

Λ2/m2 [43], the series expansion of its Mellin transform can be shown to be

DNP(N) = 1 +
2(log ε − 1)(N − 1) + 4N(ψ(0)(N) + γE)

π

√
ε + O(ε) . (8.7)

The presence of the log ε term in the coefficient of the term linear in
√

ε does not allow to interpret it as a

simple Λ/m power correction.
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N 2 3 4 5 6 7 8

σQ(N, q2, m2) = 〈xN−1〉pQCD

c @ 10.58 GeV 0.7359 0.5749 0.4601 0.3778 0.3167 0.2698 0.2331

c @ 91.2 GeV (NS) 0.5858 0.3937 0.2843 0.2151 0.1683 0.1345 0.1107

c @ 91.2 GeV (full) 0.5954 0.3988 0.2860 0.2158 0.1686 0.1353 0.1108

b @ 91.2 GeV 0.7634 0.6280 0.5309 0.4590 0.4033 0.3587 0.3222

Experimental data (norm. to one)

BELLE D∗+ → D0 (ISR corr.) 0.6418 ± 0.0042 0.4399 ± 0.0028 0.3169 ± 0.0020 0.2375 ± 0.0015 0.1838 ± 0.0012 0.1462 ± 0.0010 0.1189 ± 0.0009

ALEPH D∗+ (ISR corr.) 0.4920 ± 0.0152 0.2803 ± 0.0075 0.1748 ± 0.0047 0.1160 ± 0.0033 0.0806 ± 0.0025 0.0582 ± 0.0020 0.0432 ± 0.0016

ALEPH B 0.7163 ± 0.0085 0.5433 ± 0.0097 0.4269 ± 0.0098 0.3437 ± 0.0096 0.2819 ± 0.0094 0.2345 ± 0.0091 0.1975 ± 0.0087

DNP(N) = 〈xN−1〉NP

CLEO D∗+ 0.877+0.009
−0.010

0.769+0.007
−0.007

0.690+0.006
−0.006

0.626+0.006
−0.006

0.576+0.006
−0.006

0.534+0.006
−0.006

0.500+0.006
−0.006

BELLE D∗+ → D0 0.872+0.005
−0.006

0.765+0.005
−0.005

0.689+0.004
−0.004

0.629+0.004
−0.004

0.580+0.004
−0.004

0.542+0.004
−0.004

0.510+0.004
−0.004

ALEPH D∗+ 0.840
+0.022
−0.031

0.712
+0.018
−0.021

0.615
+0.016
−0.017

0.539
+0.015
−0.016

0.479
+0.014
−0.015

0.430
+0.014
−0.015

0.391
+0.014
−0.015

Tab. 2 and eq. (4.2) 0.868 0.767 0.688 0.626 0.576 0.536 0.503

ALEPH B 0.938+0.009
−0.014

0.865+0.014
−0.018

0.804+0.017
−0.020

0.749+0.019
−0.023

0.699+0.022
−0.025

0.654+0.024
−0.027

0.613+0.025
−0.029

SLD B 0.931+0.016
−0.030

0.850+0.019
−0.025

0.781+0.020
−0.024

0.718+0.021
−0.024

0.661+0.021
−0.024

0.610+0.021
−0.024

0.563+0.022
−0.024

KLP α

CLEO D∗+ 13.28 ± 1.27 12.76 ± 0.54 13.21 ± 0.40 13.70 ± 0.34 14.23 ± 0.32 14.81 ± 0.32 15.43 ± 0.33

BELLE D∗+ → D0 12.64 ± 0.70 12.49 ± 0.35 13.16 ± 0.27 13.82 ± 0.24 14.51 ± 0.23 15.24 ± 0.23 16.01 ± 0.23

ALEPH D∗+ 9.49 ± 2.03 9.33 ± 0.93 9.42 ± 0.68 9.58 ± 0.59 9.76 ± 0.56 9.96 ± 0.57 10.18 ± 0.59

ALEPH B 29.42 ± 5.82 25.12 ± 3.41 24.56 ± 2.90 24.22 ± 2.67 24.00 ± 2.58 23.86 ± 2.56 23.75 ± 2.57

ALEPH B, mb = 4.5 GeV 34.32 ± 7.77 28.26 ± 4.23 27.34 ± 3.51 26.73 ± 3.18 26.34 ± 3.04 26.07 ± 2.98 25.87 ± 2.97

ALEPH B, mb = 5.0 GeV 25.90 ± 4.59 22.72 ± 2.84 22.41 ± 2.46 22.23 ± 2.30 22.13 ± 2.25 22.07 ± 2.24 22.03 ± 2.26

SLD B 25.87 ± 8.66 22.11 ± 3.80 21.33 ± 2.75 20.73 ± 2.25 20.27 ± 1.98 19.89 ± 1.82 19.57 ± 1.72

BCFY r

CLEO D∗+ 0.0531 ± 0.0077 0.0610 ± 0.0036 0.0615 ± 0.0026 0.0611 ± 0.0021 0.0601 ± 0.0019 0.0587 ± 0.0017 0.0569 ± 0.0016

BELLE D∗+ → D0 0.0570 ± 0.0046 0.0628 ± 0.0025 0.0618 ± 0.0018 0.0604 ± 0.0014 0.0585 ± 0.0013 0.0564 ± 0.0011 0.0541 ± 0.0011

ALEPH D∗+ 0.0849 ± 0.0247 0.0936 ± 0.0125 0.0972 ± 0.0092 0.0988 ± 0.0080 0.0993 ± 0.0074 0.0990 ± 0.0072 0.0981 ± 0.0072

ALEPH D∗+, mc = 1.3 GeV 0.0470 ± 0.0238 0.0557 ± 0.0102 0.0594 ± 0.0074 0.0613 ± 0.0063 0.0621 ± 0.0059 0.0623 ± 0.0057 0.0619 ± 0.0057

ALEPH D∗+, mc = 1.7 GeV 0.1198 ± 0.0289 0.1288 ± 0.0146 0.1323 ± 0.0108 0.1336 ± 0.0093 0.1337 ± 0.0086 0.1329 ± 0.0084 0.1315 ± 0.0084

PSSZ ε (×102)

BELLE D∗+ → D0 0.234 ± 0.032 0.271 ± 0.019 0.260 ± 0.013 0.246 ± 0.010 0.230 ± 0.009 0.213 ± 0.007 0.197 ± 0.007

ALEPH D∗+ 0.473 ± 0.245 0.548 ± 0.129 0.574 ± 0.096 0.580 ± 0.081 0.575 ± 0.074 0.563 ± 0.071 0.547 ± 0.069

ALEPH B 0.028 ± 0.014 0.047 ± 0.016 0.056 ± 0.016 0.062 ± 0.017 0.068 ± 0.018 0.073 ± 0.019 0.077 ± 0.020

Table 4: Summary of results for the first eight moments. The first group of lines (labelled σQ(N, q2, m2) = 〈xN−1〉pQCD) gives perturbative

moments for c and b production at the Υ(4S) and Z0 energies. The second group (labelled “Experimental data”) gives the measured moments

when explicitly given by the experimental Collaborations. In this case, the ISR correction (when applied) has been taken from the right panel of

figure 3. The third group (labelled DNP(N) = 〈xN−1〉NP) gives the moments of the non-perturbative fragmentation function that we extracted

from the data. The last three groups report the value of the parameters of the KLP, BCFY and PSSZ parametrization extracted from several data

sets.

–
33

–



J
H
E
P
0
4
(
2
0
0
6
)
0
0
6

Figure 23: Ratios between new evaluations of the dσ/dpT production cross section of D∗ mesons

in pp̄ collisions at the Tevatron Run II and the value originally published in [32], (dσ/dpT )ref .

8.2 Implications for heavy-flavour hadroproduction

It is legitimate to ask what is the impact of the new, high precision Υ(4S) data on the

calculation of D meson production spectra in hadronic collisions, especially in view of the

discrepancy between Υ(4S) and Z0 data. The question has not, however, a straightforward

answer. If the discrepancy is related to a power suppressed effect in the e+e− coefficient

functions, one should then privilege the Z0 data, where power effects are much reduced. It

is worth noting, however, that if we instead use the Υ(4S) data, the impact on the hadronic

cross sections is quite limited. This is clearly visible in figure 19, where it appears that for

N around 5 the Υ(4S) moments are higher than the Z0 ones by roughly 20%. This value

is directly proportional to the D∗ production cross section in hadron collisions at large pT .

Therefore, in this ‘worst case’ scenario, having used the ALEPH data (the only accurate

ones available at the time), might have lead ref. [32] to underestimate the D∗ hadronic cross

section by 20%, an uncertainty which is anyway not larger than those of purely perturbative

origin (variation of renormalization and factorization scales) or stemming from the parton

distribution functions.

These considerations are put on a more quantitative footing in figure 23, where we

plot the ratios between new determinations of the pT distribution of D∗ production at the

Tevatron Run II and the central value obtained in ref. [32]. The solid line, labeled ‘BCFY, r

= 0.1’ is obtained by employing the same non-perturbative fragmentation function and the

same parameter r = 0.1 as in [32]. Its small difference from one is essentially of perturba-

tive origin. It is due to the different treatment of the perturbative fragmentation function

in the FONLL code for heavy quark hadronic production [45, 46] which, for consistency
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Figure 24: Non-perturbative moments from weakly decaying B’s data.

with the extraction of the non-perturbative parameters, has been modified to include also

the Sudakov resummation for the initial condition and the large-N regularization proce-

dure described in eq. (2.45). The five other curves are instead obtained with different

non-perturbative forms and/or parameters relative to the Υ(4S) or to the Z0 results from

table 4. As expected, using a different functional form (KLP) but a parameter also ex-

tracted from the ALEPH data (α = 9.3) returns a result very similar to that of ref. [32].

On the other hand, using determinations from CLEO/BELLE data (α = 13) returns a

larger cross section, the increase being of the order predicted above and not larger than

the uncertainties of perturbative origin.

As far as B mesons are concerned, the values for αB are translated into non-perturbative

moments in figure 24. The dotted band shows the values given by two extreme choices of

αB . One can see that, using everywhere the value determined at N = 2, i.e. αB ' 29,

as done in [39],13 only overestimates the moment at N = 4 by a few percent. Up to

N = 8 the difference is never larger than 10%. Such an uncertainty is fully acceptable

when calculating the hadronic production of B mesons, given the similar or larger size of

the perturbative uncertainties and of those due to the parton distribution functions.

9. Conclusions

In the present paper, we have obtained two main results. First, we have shown that it is

13In this reference, a pure NLL collinear resummation was used, without Sudakov resummation and

large-N correction factor. This does not affect, of course, the small-N region, hence the determination of a

very similar value for αB .
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possible to perform excellent fits of D and B meson fragmentation spectra in perturbative

QCD, using all known results on the perturbative heavy-quark fragmentation function, and

compounding them with a simple parametrization of non-perturbative effects. For reasons

of space we did not perform fits to available data on Ds and Λc production. We can provide

the corresponding results upon request.

A second striking result is the evidence of large non-perturbative effects, visible in

the relation between the D∗ fragmentation function at the Υ(4S) and Z0 energies. It

would be interesting to understand the power law of these contributions. Their magnitude

would suggest a 1/E scaling law. Theoretical arguments based upon infrared renormalons

would favour, instead, a 1/E2 behaviour. Because of the lack of precise D production

data in the intermediate region, it is difficult, at this point, to discriminate between the

two possibilities. We point out, however, that, if these non-perturbative corrections in-

volve the coefficient functions, they may be present also in light-hadron production, where

data at intermediate energy are available. It is thus possible that fits to the light-hadron

fragmentation functions from Υ(4S) up to Z0 energies may clarify this issue.

The parametrization of the non-perturbative component of the heavy-quark fragmen-

tation function is also relevant for the calculation of heavy-quark hadroproduction cross

sections. In the present work we provide various related results, that can be used for such

calculations.
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